
Recommendation
Systems

CSE545 - Spring 2022
Stony Brook University

H. Andrew Schwartz

 Big Data Analytics, The Class
Goal: Generalizations

A model or summarization of the data.

Data Frameworks Algorithms and Analyses

Hadoop File System

MapReduce

Spark

Tensorflow

Similarity Search

Recommendation Systems
Link Analysis

Deep Learning

Streaming
Large Scale Hyp. Testing

 Big Data Analytics, The Class
Goal: Generalizations

A model or summarization of the data.

Data Frameworks Algorithms and Analyses

Hadoop File System

MapReduce

Spark

Tensorflow

Similarity Search

Recommendation Systems
Link Analysis

Deep Learning

Streaming
Large Scale Hyp. Testing

● What other item will this user like?
(based on previously liked items)

● How much will user like item X?

 Recommendation Systems

?

● What other item will this user like?
(based on previously liked items)

● How much will user like item X?

 Recommendation Systems

● What other item will this user like?
(based on previously liked items)

● How much will user like item X?

 Recommendation Systems

 Recommendation Systems

Past User Ratings

 Recommendation Systems

Why Big Data?

● Data with many potential features (and sometimes
observations)

● An application of techniques for finding similar items
○ locality sensitive hashing
○ dimensionality reduction

 Recommendation Systems

 Recommendation Systems: Example

● Does Wal-Mart have everything you need?

Origins: Web Shopping

● Does Wal-Mart have everything you need?

(thelongtail.com)

Origins: Web Shopping

● Does Wal-Mart have everything you need?

● A lot of products are only of interest to
a small population (i.e. “long-tail products”).

● However, most people buy many products
that are from the long-tail.

● Web shopping enables more choices
○ Harder to search
○ Recommendation engines to the rescue

(thelongtail.com)

Origins: Web Shopping

https://www.wired.com/2004/10/tail/

● Does Wal-Mart have everything you need?

● A lot of products are only of interest to
a small population (i.e. “long-tail products”).

● However, most people buy many products
that are from the long-tail.

● Web shopping enables more choices
○ Harder to search
○ Recommendation engines to the rescue

(thelongtail.com)

Origins: Web Shopping

https://www.wired.com/2004/10/tail/

Given: users, items, utility matrix

Rec Systems Model

Given: users, items, utility matrix

user
Game of
Thrones

Fargo Brooklyn
Nine-Nine

Silicon
Valley

Walking
Dead

A 4 5 3 3

B 5 4 2

C 5 2

Rec Systems Model

Given: users, items, utility matrix

user
Game of
Thrones

Fargo Brooklyn
Nine-Nine

Silicon
Valley

Walking
Dead

A 4 5 3 3

B 5 4 2

C 5 2? ? ?

Rec Systems Model

Problems to tackle:

1. Gathering ratings

2. Extrapolate unknown ratings
a. Explicit: based on user ratings and reviews

(problem: only a few users engage in such tasks)
b. Implicit: Learn from actions (e.g. purchases, clicks)

(problem: hard to learn low ratings)

3. Evaluation

Rec Systems Model

Problems to tackle:

1. Gathering ratings

2. Extrapolate unknown ratings
a. Explicit: based on user ratings and reviews

(problem: only a few users engage in such tasks)
b. Implicit: Learn from actions (e.g. purchases, clicks)

(problem: hard to learn low ratings)

3. Evaluation

Rec Systems Model Common Approaches

1. Content-based
2. Collaborative
3. Latent Factor

Problems to tackle:

1. Gathering ratings

2. Extrapolate unknown ratings
a. Explicit: based on user ratings and reviews

(problem: only a few users engage in such tasks)
b. Implicit: Learn from actions (e.g. purchases, clicks)

(problem: hard to learn low ratings)

3. Evaluation

Rec Systems Model Common Approaches

1. Content-based
2. Collaborative
3. Latent Factor

Based on similarity of items to past items that they have rated.

Content-Based Rec Systems

Based on similarity of items to past items that they have rated.

Content-Based Rec Systems

Based on similarity of items to past items that they have rated.

1. Build profiles of items (set of features); examples:
shows: producer, actors, theme, review
people: friends, posts pick words with tf-idf

Content-Based Rec Systems

Based on similarity of items to past items that they have rated.

1. Build profiles of items (set of features); examples:
shows: producer, actors, theme, review
people: friends, posts

2. Construct user profile from item profiles; approach:
average all item profiles of items they’ve purchased
variation: weight by difference from their average

pick words with tf-idf

Content-Based Rec Systems

Based on similarity of items to past items that they have rated.

1. Build profiles of items (set of features); examples:
shows: producer, actors, theme, review
people: friends, posts

2. Construct user profile from item profiles; approach:
average all item profiles of items they’ve purchased
variation: weight by difference from their average ratings

3. Predict ratings for new items; approach:
find similarity between user and items

pick words with tf-idf

x

i

Content-Based Rec Systems

Based on similarity of items to past items that they have rated.

1. Build profiles of items (set of features); examples:
shows: producer, actors, theme, review
people: friends, posts

2. Construct user profile from item profiles; approach:
average all item profiles of items they’ve purchased
variation: weight by difference from their average ratings

3. Predict ratings for new items; approach:
find similarity between user and items

pick words with tf-idf

x

i

Content-Based Rec Systems

finding near-neighbors in high-dimensional space

Typical properties of a
distance metric, d:

d(a, a) = 0

d(a, b) = d(b, a)

d(a, b) ≤ d(a,c) + d(c,b)

(http://rosalind.info/glossary/euclidean-distance/)

Distance Metrics (for Similarity)

finding near-neighbors in high-dimensional space

There are other metrics of similarity. e.g:

● Euclidean Distance

● Cosine Distance

…

● Edit Distance

● Hamming Distance

(“L2 Norm”)

Distance Metrics (for Similarity)

finding near-neighbors in high-dimensional space

There are other metrics of similarity. e.g:

● Euclidean Distance

● Cosine Distance

…

● Edit Distance

● Hamming Distance

(“L2 Norm”)

Distance Metrics (for Similarity)

__X ᐧ Y__
 ||X|| ||Y||

("cosine similarity")

● Only need users history

● Captures unique tastes

● Can recommend new items

● Can provide explanations

Content-Based Rec Systems

● Only need users history

● Captures unique tastes

● Can recommend new items

● Can provide explanations

● Need good features

● New users don’t have history

● Doesn’t venture “outside the box”

(Overspecialized)

Content-Based Rec Systems

● Only need users history

● Captures unique tastes

● Can recommend new items

● Can provide explanations

● Need good features

● New users don’t have history

● Doesn’t venture “outside the box”

(Overspecialized)

(not exploiting other users judgments)

Content-Based Rec Systems

● Need good features

● New users don’t have history

● Doesn’t venture “outside the box”

(Overspecialized)

(not exploiting other users judgments)

Collaborative Filtering

Rec Systems

Problems to tackle:

1. Gathering ratings

2. Extrapolate unknown ratings
a. Explicit: based on user ratings and reviews

(problem: only a few users engage in such tasks)
b. Implicit: Learn from actions (e.g. purchases, clicks)

(problem: hard to learn low ratings)

3. Evaluation

Common Approaches

1. Content-based
2. Collaborative
3. Latent Factor

Rec Systems

Problems to tackle:

1. Gathering ratings

2. Extrapolate unknown ratings
a. Explicit: based on user ratings and reviews

(problem: only a few users engage in such tasks)
b. Implicit: Learn from actions (e.g. purchases, clicks)

(problem: hard to learn low ratings)

3. Evaluation

Common Approaches

1. Content-based
2. Collaborative
3. Latent Factor

-- neighborhood

Collaborative Filtering

user
Game of
Thrones

Fargo Brooklyn
Nine-Nine

Silicon
Valley

Walking
Dead

A 4 5 2 3

B 5 4 2

C 5 2

Collaborative Filtering

user
Game of
Thrones

Fargo Brooklyn
Nine-Nine

Silicon
Valley

Walking
Dead

A 4 5 2 3

B 5 4 2

C 5 2

General Idea:

1) Find similar users = “neighborhood”

2) Infer rating based on how similar users rated

Collaborative Filtering

user
Game of
Thrones

Fargo Brooklyn
Nine-Nine

Silicon
Valley

Walking
Dead

A 4 5 2 3

B 5 4 2

C 5 2

Given: user, x; item, i; utility matrix, u
1. Find neighborhood, N # set of k users most similar to

 x who have also rated i

Collaborative Filtering

user
Game of
Thrones

Fargo Brooklyn
Nine-Nine

Silicon
Valley

Walking
Dead

A 4 5 2 3

B 5 4 2

C 5 2

Given: user, x; item, i; utility matrix, u
1. Find neighborhood, N # set of k users most similar to

 x who have also rated i
Two Challenges: (1) user bias, (2) missing values

Collaborative Filtering

user
Game of
Thrones

Fargo Brooklyn
Nine-Nine

Silicon
Valley

Walking
Dead

A 4 => 0.5 5 => 1.5 2 => -1.5 => 0 3 => -0.5

B 5 4 2

C 5 2

Given: user, x; item, i; utility matrix, u
1. Find neighborhood, N # set of k users most similar to

 x who have also rated i
Two Challenges: (1) user bias, (2) missing values
 Solution: subtract user’s mean, add zeros for missing

Collaborative Filtering

user
Game of
Thrones

Fargo Brooklyn
Nine-Nine

Silicon
Valley

Walking
Dead

A 4 => 0.5 5 => 1.5 2 => -1.5 => 0 3 => -0.5

B 5 4 2

C 5 2

Given: user, x; item, i; utility matrix, u
0. Update u: mean center, missing to 0
1. Find neighborhood, N # set of k users most similar to

 x who have also rated i
-- sim(x, other) = cosine_sim(u[x], u[other])
-- threshold to top k (e.g. k = 30)

Collaborative Filtering

user
Game of
Thrones

Fargo Brooklyn
Nine-Nine

Silicon
Valley

Walking
Dead

A 4 => 0.5 5 => 1.5 2 => -1.5 => 0 3 => -0.5

B 5 4 2

C 5 2

Given: user, x; item, i; utility matrix, u
0. Update u: mean center, missing to 0
1. Find neighborhood, N # set of k users most similar to

 x who have also rated i
-- sim(x, other) = cosine_sim(u[x], u[other])
-- threshold to top k (e.g. k = 30)

2. Predict utility (rating) of i based on N

Collaborative Filtering

user
Game of
Thrones

Fargo Brooklyn
Nine-Nine

Silicon
Valley

Walking
Dead

A 4 => 0.5 5 => 1.5 2 => -1.5 => 0 3 => -0.5

B 5 4 2

C 5 2

Given: user, x; item, i; utility matrix, u
0. Update u: mean center, missing to 0
1. Find neighborhood, N # set of k users most similar to

 x who have also rated i
-- sim(x, other) = cosine_sim(u[x], u[other])
-- threshold to top k (e.g. k = 30)

2. Predict utility (rating) of i based on N
-- average, weighted by sim

Collaborative Filtering

Given: user, x; item, i; utility matrix, u
0. Update u: mean center, missing to 0
1. Find neighborhood, N # set of k users most similar to

 x who have also rated i
-- sim(x, other) = cosine_sim(u[x], u[other])
-- threshold to top k (e.g. k = 30)

2. Predict utility (rating) of i based on N
-- average, weighted by sim

“User-User collaborative filtering”

Collaborative Filtering

Given: user, x; item, i; utility matrix, u
0. Update u: mean center, missing to 0
1. Find neighborhood, N # set of k users most similar to

 x who have also rated i
-- sim(x, other) = cosine_sim(u[x], u[other])
-- threshold to top k (e.g. k = 30)

2. Predict utility (rating) of i based on N
-- average, weighted by sim

“User-User collaborative filtering”

Item-Item:
Flip rows/columns of utility matrix and use same methods.
(i.e. estimate rating of item i, by finding similar items, j)

Collaborative Filtering

Given: user, x; item, i; utility matrix, u
0. Update u: mean center, missing to 0
1. Find neighborhood, N # set of k items most similar to

 i also rated by x
-- sim(i, other) = cosine_sim(u[i], u[other])
-- threshold to top k (e.g. k = 30)

2. Predict utility (rating) by x based on N
-- average, weighted by sim

“User-User collaborative filtering”

Item-Item:
Flip rows/columns of utility matrix and use same methods.
(i.e. estimate rating of item i, by finding similar items, j)

Collaborative Filtering

Item-item often works better than user-user. Why?

Users tend to be more different from each other than items are from
other items.

e.g. Mary likes jazz + rock, Coleman likes classical + rock,
 but Mary may still have same rock preferences as Bob

item-item vs user-user

Item-item often works better than user-user. Why?

Users tend to be more different from each other than items are from
other items.

e.g. Mary likes jazz + rock, Coleman likes classical + rock,
 but Mary may still have same rock preferences as Bob

In other words, users span genres but items usually do not.

item-item vs user-user

Item-Item: Example

Item-Item: Example

Item-Item: Example

Same as
cosine sim
when
subtracting
the mean

Item-Item: Example

Item-Item: Example

utility(1, 5) = (0.41*2 + 0.59*3) / (0.41+0.59)

Rec Systems

Problems to tackle:

1. Gathering ratings

2. Extrapolate unknown ratings
a. Explicit: based on user ratings and reviews

(problem: only a few users engage in such tasks)
b. Implicit: Learn from actions (e.g. purchases, clicks)

(problem: hard to learn low ratings)

3. Evaluation

Common Approaches

1. Content-based
2. Collaborative
3. Latent Factor

Rec Systems

Problems to tackle:

1. Gathering ratings

2. Extrapolate unknown ratings
a. Explicit: based on user ratings and reviews

(problem: only a few users engage in such tasks)
b. Implicit: Learn from actions (e.g. purchases, clicks)

(problem: hard to learn low ratings)

3. Evaluation

Common Approaches

1. Content-based
2. Collaborative
3. Latent Factor

f1, f2, f3, f4, … fp

o1
o2
o3
…

oN

rows:
N observations

us
er

s

movies

Rec Systems
columns:
p features

Goal: Complete Matrix
f1, f2, f3, f4, … fp

o1
o2
o3
…

oN

us
er

s

movies

Rec Systems

Problem: Given Incomplete Matrix
f1, f2, f3, f4, … fp

o1
o2
o3
…

oN

us
er

s

movies

Rec Systems

Complete Matrix using Latent Factors
c1, c2, c3, c4, … cp’

o1
o2
o3
…

oN

f1, f2, f3, f4, … fp

o1
o2
o3
…

oN

Try to best represent but with on p’ columns.
Dimensionality reduction

Rec Systems

Complete Matrix using Latent Factors

Find latent factors

Reconstruct matrix

Rec Systems

Dimensionality Reduction - PCA
Linear approximates of data in r dimensions.

Found via Singular Value Decomposition:

X[nxp] = U[nxr] D[rxr] V[pxr]
T

X: original matrix, U: “left singular vectors”,
D: “singular values” (diagonal), V: “right singular vectors”

Projection (dimensionality reduced space) in 3 dimensions:
(U[nx3] D[3x3] V[px3]

T)

To reduce features in new dataset:
Xnew V = Xnew_small

Dimensionality Reduction PCA

Linear approximates of data in r dimensions.

Found via Singular Value Decomposition:

X[nxp] = U[nxr] D[rxr] V[pxr]
T

X: original matrix, U: “left singular vectors”,
D: “singular values” (diagonal), V: “right singular vectors”

X ≈ nn

p p

Dimensionality Reduction PCA

X[nxp] = U[nxr] D[rxr] V[pxr]
T

Users to movies matrix

Dimensionality Reduction PCA

Linear approximates of data in r dimensions.

Found via Singular Value Decomposition:

X[nxp] = U[nxr] D[rxr] V[pxr]
T

X: original matrix, U: “left singular vectors”,
D: “singular values” (diagonal), V: “right singular vectors”

X ≈ nn

p p

Dimensionality Reduction PCA

Dimensionality Reduction PCA

Linear approximates of data in r dimensions.

Found via Singular Value Decomposition:

X[nxp] = U[nxr] D[rxr] V[pxr]
T

X: original matrix, U: “left singular vectors”,
D: “singular values” (diagonal), V: “right singular vectors”

To check how well the original matrix can be reproduced:
Z[nxp] = U D VT , How does Z compare to original X?

X[nxp] = U[nxr] D[rxr] V[pxr]
T

Dimensionality Reduction PCA

Options for Parallelizing

1. Approximate solutions to PCA (very large speedups with little drawback!):
a. Stochastic Sampling (also sometimes called "randomized" which is ambiguous):

Only using a sample rows (i.e. only some users for recommendation systems)

b. Truncated SVD: Only optimizing for minimizing reconstruction error based on up
to r dimensions (full SVD solves for up to min(n, p) dimensions and then you just
truncate the result for the lower rank version). One you do this, by the way, using a
smaller sample becomes much less of a problem.

c. Limiting power iterations to a few iterations: Power iterations from pagerank
solves for the first principle component. This can be extended to multiple
components.
(more here.)

PCA - Parallelized

https://epubs.siam.org/doi/pdf/10.1137/090771806?casa_token=dTZRkY3T7YMAAAAA:c0XpknEiHduJes9DXxEjuNuEv8h6hMhtu1Ez1Fd69TIT_oqjU1bDAbyJgIpCF9KCU-BNcOSP26I

Options for Parallelizing
1. Approximate solutions to PCA (very large speedups with little drawback!):

a. Stochastic Sampling (also sometimes called "randomized" which is ambiguous):
Only using a sample rows (i.e. users for recommendation systems)

b. Truncated SVD: Only optimizing for minimizing reconstruction error based on up
to r dimensions (full SVD solves for up to min(n, p) dimensions and then you just
truncate the result for the lower rank version). One you do this, by the way, using a
smaller sample becomes much less of a problem.

c. Limiting power iterations to a few iterations: Power iterations from pagerank
solves for the first principle component. This can be extended to multiple
components.
(more here.)

2. Distribute the matrix operations. Complex; not as flexible (usually done across
processors within node)

3. Data Parallelism: As in other instances stochastic or mini-batch gradient
descent.

PCA - Parallelized

https://epubs.siam.org/doi/pdf/10.1137/090771806?casa_token=dTZRkY3T7YMAAAAA:c0XpknEiHduJes9DXxEjuNuEv8h6hMhtu1Ez1Fd69TIT_oqjU1bDAbyJgIpCF9KCU-BNcOSP26I

Rec Systems

Problems to tackle:

1. Gathering ratings

2. Extrapolate unknown ratings
a. Explicit: based on user ratings and reviews

(problem: only a few users engage in such tasks)
b. Implicit: Learn from actions (e.g. purchases, clicks)

(problem: hard to learn low ratings)

3. Evaluation

Common Approaches

1. Content-based
2. Collaborative
3. Latent Factor

Rec Systems

Problems to tackle:

1. Gathering ratings

2. Extrapolate unknown ratings
a. Explicit: based on user ratings and reviews

(problem: only a few users engage in such tasks)
b. Implicit: Learn from actions (e.g. purchases, clicks)

(problem: hard to learn low ratings)

3. Evaluation

Common Approaches

1. Content-based
2. Collaborative
3. Latent Factor

