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Past User Ratings
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Why Big Data?

● Data with many potential features (and sometimes 
observations)

● An application of techniques for finding similar items
○ locality sensitive hashing
○ dimensionality reduction

 Recommendation Systems



 Recommendation Systems: Example
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● Does Wal-Mart have everything you need?

● A lot of products are only of interest to 
a small population (i.e. “long-tail products”).

● However, most people buy many products
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Problems to tackle:

1. Gathering ratings

2. Extrapolate unknown ratings
a. Explicit: based on user ratings and reviews

(problem: only a few users engage in such tasks)
b. Implicit: Learn from actions (e.g. purchases, clicks)

(problem: hard to learn low ratings)

3. Evaluation
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finding near-neighbors in high-dimensional space

Typical properties of a
distance metric, d:

d(a, a) = 0

d(a, b) = d(b, a)

d(a, b) ≤ d(a,c) + d(c,b)

(http://rosalind.info/glossary/euclidean-distance/)

Distance Metrics (for Similarity)
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finding near-neighbors in high-dimensional space

There are other metrics of similarity. e.g:

● Euclidean Distance

● Cosine Distance

… 

● Edit Distance

● Hamming Distance

(“L2 Norm”)

Distance Metrics (for Similarity)

__X ᐧ Y__
 ||X|| ||Y||

("cosine similarity")
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General Idea:

1) Find similar users = “neighborhood”

2) Infer rating based on how similar users rated

Collaborative Filtering



user
Game of 
Thrones

Fargo Brooklyn 
Nine-Nine

Silicon 
Valley

Walking 
Dead

A 4 5 2 3 

B 5 4 2

C 5 2

Given: user, x;  item, i;  utility matrix, u
1. Find neighborhood, N # set of k users most similar to 

 x who have also rated i

Collaborative Filtering



user
Game of 
Thrones

Fargo Brooklyn 
Nine-Nine

Silicon 
Valley

Walking 
Dead

A 4 5 2 3 

B 5 4 2

C 5 2

Given: user, x;  item, i;  utility matrix, u
1. Find neighborhood, N # set of k users most similar to 

 x who have also rated i
Two Challenges: (1) user bias, (2) missing values

Collaborative Filtering



user
Game of 
Thrones

Fargo Brooklyn 
Nine-Nine

Silicon 
Valley

Walking 
Dead

A 4 =>  0.5 5 => 1.5 2 => -1.5 => 0 3 => -0.5

B 5 4 2

C 5 2
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1. Find neighborhood, N # set of k users most similar to 

 x who have also rated i
Two Challenges: (1) user bias, (2) missing values
 Solution: subtract user’s mean, add zeros for missing
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Given: user, x;  item, i;  utility matrix, u
0. Update u: mean center, missing to 0
1. Find neighborhood, N # set of k items most similar to 

 i also rated by x
-- sim(i, other) = cosine_sim(u[i], u[other])
-- threshold to top k (e.g. k = 30)

2. Predict utility (rating) by x based on N
-- average, weighted by sim

“User-User collaborative filtering”

Item-Item: 
Flip rows/columns of utility matrix and use same methods. 
(i.e. estimate rating of item i, by finding similar items, j)

Collaborative Filtering



Item-item often works better than user-user. Why? 

Users tend to be more different from each other than items are from 
other items. 

e.g. Mary likes jazz + rock, Coleman likes classical + rock,
      but Mary may still have same rock preferences as Bob
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Users tend to be more different from each other than items are from 
other items. 

e.g. Mary likes jazz + rock, Coleman likes classical + rock,
      but Mary may still have same rock preferences as Bob

In other words, users span genres but items usually do not.

item-item vs user-user



Item-Item: Example



Item-Item: Example



Item-Item: Example

Same as
cosine sim 
when 
subtracting
the mean
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Item-Item: Example

utility(1, 5) = (0.41*2 + 0.59*3) / (0.41+0.59)
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rows: 
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Problem: Given Incomplete Matrix
f1, f2, f3, f4, …                                                     fp

o1
o2
o3
…

oN

us
er

s

movies

Rec Systems



Complete Matrix using Latent Factors
c1, c2, c3, c4, …              cp’

o1
o2
o3
…

oN

f1, f2, f3, f4, …                                                     fp

o1
o2
o3
…

oN

Try to best represent but with on p’ columns.
Dimensionality reduction

Rec Systems



Complete Matrix using Latent Factors

Find latent factors

Reconstruct matrix

Rec Systems



Dimensionality Reduction - PCA
Linear approximates of data in r dimensions.

Found via Singular Value Decomposition:

X[nxp] = U[nxr] D[rxr] V[pxr]
T

X: original matrix, U: “left singular vectors”, 
D: “singular values” (diagonal), V: “right singular vectors”

Projection (dimensionality reduced space) in 3 dimensions:
(U[nx3] D[3x3] V[px3]

T)

To reduce features in new dataset: 
Xnew V = Xnew_small 

Dimensionality Reduction PCA
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Found via Singular Value Decomposition:

X[nxp] = U[nxr] D[rxr] V[pxr]
T

X: original matrix, U: “left singular vectors”, 
D: “singular values” (diagonal), V: “right singular vectors”

X ≈ nn
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X[nxp] = U[nxr] D[rxr] V[pxr]
T

Users to movies matrix

Dimensionality Reduction PCA
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Dimensionality Reduction PCA

Linear approximates of data in r dimensions.

Found via Singular Value Decomposition:

X[nxp] = U[nxr] D[rxr] V[pxr]
T

X: original matrix, U: “left singular vectors”, 
D: “singular values” (diagonal), V: “right singular vectors”

To check how well the original matrix can be reproduced:
Z[nxp] = U D VT , How does Z compare to original X?



X[nxp] = U[nxr] D[rxr] V[pxr]
T

Dimensionality Reduction PCA



Options for Parallelizing

1. Approximate solutions to PCA (very large speedups with little drawback!): 
a. Stochastic Sampling (also sometimes called "randomized" which is ambiguous): 

Only using a sample rows (i.e. only some users for recommendation systems)

b. Truncated SVD: Only optimizing for minimizing reconstruction error based on up 
to r dimensions (full SVD solves for up to min(n, p) dimensions and then you just 
truncate the result for the lower rank version). One you do this, by the way, using a 
smaller sample becomes much less of a problem. 

c. Limiting power iterations to a few iterations: Power iterations from pagerank 
solves for the first principle component. This can be extended to multiple 
components. 
(more here.)

PCA - Parallelized

https://epubs.siam.org/doi/pdf/10.1137/090771806?casa_token=dTZRkY3T7YMAAAAA:c0XpknEiHduJes9DXxEjuNuEv8h6hMhtu1Ez1Fd69TIT_oqjU1bDAbyJgIpCF9KCU-BNcOSP26I
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smaller sample becomes much less of a problem. 

c. Limiting power iterations to a few iterations: Power iterations from pagerank 
solves for the first principle component. This can be extended to multiple 
components. 
(more here.)

2. Distribute the matrix operations. Complex; not as flexible (usually done across 
processors within node)

3. Data Parallelism: As in other instances stochastic or mini-batch gradient 
descent. 

PCA - Parallelized
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